the complex.⁸ Except for the base-hydrolysis reaction,¹⁰ the Sto N-bonded product ratio was also leaving-group dependent, even within the induced aquation group of reactions, and there was **no** obvious correlation of this S- to N-bonded ratio, or the total SCNcompetition, with ion pairing of the reactants.* These results appear to preclude a classic pentacoordinate intermediate $[(NH₃)₅Co]³⁺$, but they also seem to eliminate ion pairs as the direct source of competition products.

Mixed-anion studies were initiated to probe this aspect further.^{3,4} **In** particular, the effect of the more strongly ion-pairing anion **S042-** for a range of different competitors was examined for the classic induced aquation, nitrosation of $[(NH₃)₅CoN₃]^{2+}$, a reaction for many years believed to involve the reduced coordination number intermediate $[(NH₃)₅Co]³⁺$. The results of this work showed that, while anions certainly affected the rate, SO_4^2 ⁻ had **no** effect **on** the competition. The widely accepted preassociation mechanism was therefore in trouble **on** this important aspect.

The present work was undertaken in the belief that the effects of ion pairing both **on** rate and products could be quantified much more readily for the simple spontaneous aquation reactions because the rate law should not suffer the complications found^{3,4} for induced aquation. This has proven to be so. **In** the present work we have shown that SCN⁻ competes with water for the vacated coordination site arising in the substitution process in precisely the same way when $[(NH₃)₅CoX]ⁿ⁺$ is the reactant ion (or the $[(NH₃)₅CoX]ⁿ⁺$, SCN⁻ ion pair) as when the $[(NH₃)₅CoX]ⁿ⁺$, SO_4^2 ⁻ ion pair is the reactant.

This remarkable result emphasizes our continued view that preassociation of the competing anion is not required for direct product formation. Rather, there must be a common productdetermining species formed from the free cation or any of its ion pairs because anion entry is not rate determining, and this species survives for a time sufficient to sample its inherited ion atmosphere. For the $[(NH₃)₅CoX]ⁿ⁺$ substitution chemistry, we maintain that this intermediate is the very short lived $[(NH₃)₅Co]³⁺$, despite being a species of demonstrably variable lifetime⁸ that appears to depend upon its rate of generation.

Acknowledgment. This work was supported by a grant from the Australian Research Grants Scheme.

Supplementary Material **Available:** Tables I and **11,** listing kinetic data **(2** pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, The University of Wisconsin-Milwaukee, P.O. Box **413,** Milwaukee, Wisconsin **53201**

Ligand-Scrambling Reactions of Cyano(trialkyl/triarylphosphine)gold(I) Complexes: Examination of Factors Influencing the Equilibrium Constant

Anne **L.** Hormann-Arendt and C. Frank Shaw **III***

Received December 21, 1989

The ligand-scrambling reaction of R₃PAuCN (to form $(R_3P)_2Au^+$ and Au(CN)₂⁻) has been studied for R = Ph, Me, Et, *i*-Pr, and Cy (Cy = cyclo-C₆H₁₁).¹ The reactions are conveniently studied by ³¹P and ¹³C N undergoes rapid ligand exchange and must be cooled to approximately 240 K to observe sharp resonances for the individual equilibrium components. All of the aliphatic complexes are in the slow exchange limit allowing observation by NMR spectroscopy at room temperature. The cyclohexyl complex equilibrated slowly, requiring several days to reach equilibrium, while the other complexes equilibrated within the time required to measure the spectrum. Equilibrium constants $(K_{eq} = [(R_3P)_2Au^+] [Au (CN)_2$ ⁻]/[R₃PAuCN]²) were measured by integration of ³¹P NMR spectra of methanol solutions of the complexes. For the ethyl complex, K_{eq} is dependent on the initial concentration, [Et₃PAuCN]₀, and the ionic dependence **IS** attributed to the ionic strength effect of the reaction products. The effects of the phosphine substituents on **Kq** were compared at 240 K in 0.25M NH_4NO_3 methanol solutions. The K_{eq} values (\pm esd) are as follows: Ph_3PAuCN , 0.112 \pm 0.005; Me,PAuCN, 0.37 **f** 0.05; Et,PAuCN, **0.24 i 0.02;** i-Pr,PAuCN, **0.29 f** 0.03; Cy,PAuCN, **0.49 f 0.02.** A convenient new procedure for preparing AuCN, the precursor of R₃PAuCN, from Me₂SAuCI was developed. Of the R₃PAuCN complexes studied, i-Pr,PAuCN and Cy,PAuCN have not been reported in the literature.

Introduction

Recently, we examined the solid-state structure and solution equilibria of cyano(triethylphosphine)gold(I), Et₃PAuCN.² In the solid state, the gold is coordinated to a phosphine and cyanide ligand, but in solution, the complex undergoes a novel ligand scrambling reaction:

$$
2Et3PAuCN \rightleftharpoons (Et3P)2Au+ + Au(CN)2- (1)
$$

The equilibrium constant for the reaction was shown to be dependent **upon** the solvent, increasing with the polarity and/or polarizability of the solvent.

Ligand scrambling reactions of gold(1) complexes that are initiated by the presence of excess ligands have been known for some time.3 The reaction in eq **1,** however, does not require the presence of excess ligand. Its importance is just becoming recognized; such reactions may significantly alter the solution

- (I) List of abbreviations: Ph = phenyl, Me = methyl, Et = ethyl, i-Pr = isopropyl, Cy = cyclohexyl, R,P = **trialkyl/triarylphosphine,** R,PO ⁼**trialkyl/triarylphosphine** oxide.
- (2) Hormann. A. L.; Shaw, C. F., **111;** Bennett, D. W.; Reiff, W. M. *Inorg. Chem.* **1986,** *25,* 3953.
- (3) (a) Al-Baker, S.; Hill, W. E.; McAuliffe, C. A. J. Chem. Soc., Dalton
Trans. 1986, 1297. (b) Mays, M. J.; Vergano, P. A. J. Chem. Soc.,
Dalton Trans. 1979, 1112. (c) Parish, R. V.; Parry, O.; McAuliffe, C. A. J. *Chem. Soc., Dalton Trans.* **1981,** 2098.

chemistry of gold(1) complexes used in the treatment of rhematoid arthritis.^{2,4} Ligand scrambling reactions analgous to eq 1 have been reported for a variety of anionic complexes,^{4a,5} but to our knowledge, $(mpt)AuCN$ (mpt = 1-methylpyridine-2-thione)⁶ and $(NH₂)₂CSAuI⁷$ are the only other neutral gold(I) complexes reported to undergo similar ligand exchange. Two extreme cases of the ligand scrambling reaction given in eq 1 are the complexes **(tetrahydrothiophene)gold(I)** iodide* and **(pyridine)chlorogold(I)?** which exist in the solid state as the ionic complexes [Au- $(THT)_2^+$] [AuI₂⁻] and [(py)₂Au⁺] [AuCl₂⁻], respectively.

Because of the novelty of this ligand-scrambling reaction and its possible biological implications, the effects of several extrinsic and intrinsic influences **on** the extent of the reaction were systematically examined. The extrinsic influences examined here are the initial concentration of the complexes, $[R_3PAuCN]_0$, and

- **(8)** Ahrland, **S.;** Noren, B.; Oskarsson, A. *Inorg. Chem.* **1985, 24,** 1330. **(9)** Guy, J. J.; Jones, P. G.; Mays, M. J.; Sheldrick, G. M. *J. Chem. Soc.,*
- *Dalton Trans.* **1987,** 8.

⁽a) Lewis, G.; Shaw, C. F., III. *Inorg. Chem.* 1986, 25, 58. (b) Hor-mann, A. L. Ph.D. Thesis, University of Wisconsin-Milwaukee, 1988.
(a) Belevantsev, V. I.; Peshchevitskii, B. I.; Tsvelodub, L. D. Izv. Sib.

Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk. **1985,** *3,* **64.** (b) EIHinnawi, M. A.; Peter, L.; Meyer, B. J. *Raman Spectrosc.* **1985,** *16, 212.*

Dickson, P. N.; Wehrli, A.; Geier, G. *Inorg. Chem.* **1988, 27,** 2921.

^{.,} Belevantsev, V. I.; Peshchevitskii, B. I.; Tsvelodub, L. D. Zh. *Neorg. Khim.* **1986,** *31, 3065.*

the ionic strength of the medium. The steric hindrance and the electronic properties of the phosphine are the intrinsic factors examined. For this study, we synthesized and characterized a series of R_3PAuCN complexes and measured the equilibrium constants (K_{∞}) for their ligand scrambling reactions.

The phosphines selected in this study have a wide range of steric and electronic properties. Tolman has used two parameters, the cone angle, θ , and an electronic parameter, ν_{CO} , to order the steric and electron-donating properties of phosphines.^{10a} v_{CO} is the frequency of the A_1 carbonyl mode of $Ni(CO)_3L$ dissolved in $CH₂Cl₂$. In comparing two phosphines, a lower ν_{CO} value reflects a larger net electron-donating ability, (including σ -donating and π -accepting interactions).¹⁰ θ and ν_{CO} values for the different phosphines are provided in the Discussion section (Table **111).** A second parameter that may be used to order the electron-donating ability of a phosphine is the ${}^{1}J_{\text{Se-P}}$ value¹¹ measured for the corresponding R3PSe compound (also given later in Table **111).** Generally, a decrease in the $^1J_{\text{Sep}}$ value reflects a increase in the Lewis basicity of the phosphine.

Experimental Section

Reagents. Deuterated methanol- d_1 , Ph_1P , Et_1P , and Cy_1P were obtained from Aldrich. Me₃P and *i*-Pr₃P were purchased from Strem Chemicals. The 99% K¹³CN was purchased from Stohler Isotope Chemicals. Me₂SAuCl was prepared according to a published procedure.¹²

AuCN. In a darkened room, Me2SAuCI **(0.3709** g, **1.26** mmol) was slurried in **15** mL of acetone. Under a nitrogen purge, an aqueous solution of KCN **(0.1746** g, **2.68** mmol in **8** mL) was slowly added with stirring. (In some cases sufficient K¹³CN was used to yield Au¹³CN that was 25-30% ¹³CN⁻ enriched.) After the solution was stirred and purged with N₂ for 10 min, the colorless solution was filtered to remove solid impurities. Concentrated H₂SO₄ (4.6 mL) was slowly added to the $KAu(CN)$, solution. The lemon yellow precipitate was isolated by centrifugation and washed twice with double-distilled H₂O, twice with absolute EtOH, and twice with anhydrous ether. The AuCN was allowed to dry overnight in the desiccator over P₂O₅. Yellow AuCN was obtained (0.1571 g, 0.704 mmol, 73.8%): $\nu_{CN} = 2238 \text{ cm}^{-1}$; Literature value = **2236** cm-'.l' Anal. Calcd for AuCN: C, **5.39;** H, 0.0; N, **6.28.** Found: C, **5.41;** H, 0.25; N, **6.33.**

R₃PAuCN. All of the R₃PAuCN complexes were prepared by the addition of R₃P to an excess of AuCN(s) (or Au¹³CN, 25-30% enriched) in methanol. (Acetone was used as the solvent in preparing the *i-*Pr₃PAuCN). Cy_3P and Ph₃P were added as solids while Et₃P, *i*-Pr₃P, and Me,P were added as liquids under a nitrogen flow with stirring. In all preparations, the reaction was almost immediate, but stirring was continued for $\sim \frac{1}{2}$ h. The excess AuCN was removed by centrifugation. Chilling and/or slow evaporation of the solvent from the decantate yielded white crystals of R_3PAuCN , which were washed with cold, anhydrous ether. All of the complexes gave satisfactory elemental analysis. Analytical data are available as supplementary material.

Vibration Spectra. Infrared (IR) spectra of the complexes were recorded on a Nicolet MX-IO spectrophotometer from **4800** to **400** cm-' as Nujol mulls on NaCl plates. v_{CN} values are available as supplementary material.

31P{1HJ and 13C{lHI Nuclear Magnetic Resonance Spectroscopy. All 3'P('H} and "C{'H] spectra were obtained on a Bruker WP **250** multinuclear spectrometer at **101.3** and **62.9** MHz, respectively. [R,PAuCN], varied from 0.010 to 0.10 M, depending upon the experiment. Spectra were obtained at **297.240,** or **200** K, and the solvent used was deuterated methanol CH,OD. For some of the I3C NMR spectra, **25-30%** "CNenriched complexes, $R_3PAu^{13}CN$, were used to shorten the acquistion time required to see the R₃PAuCN and Au(CN)⁻¹⁴ and to facilitate observation of $^2J_{PC}$. T_1 values for the phosphorous nuclei in $(R_3P)_2Au^*$ and R₃PAuCN were measured by the inversion recovery method.¹⁵

- (1 I) (a) **Swol, S.** M.; Verkade. J. G. *Inorg. Chem.* **1984.** *23,* 3487. (b) Kroshefsky, R. D.; Weiss, R.; Verkade, J. *G. Inorg. Chem.* **1979,** *18,* **469.**
- (12) Shaw. C. F., **111;** Cancro, M. P.; Butler, **1. S.** *J. Labelled Compd. Radiopharm.* **1979,** *16.* 827.
- (13) Gans, **P.;** Gill, J. **B.;** Johnson, **L.** H. *J. Chem.* Soc., *Dalton Trans.* **1987,** 673.
-
- (14) Pesek, J. J.; Mason, R. W. Inorg. Chem. 1979, 18, 924.
(15) Levy, G. C.; Lichter, R. L.; Nelson, G. L. In Carbon-13 Nuclear
Magnetic Resonance Spectroscopy, Wiley Interscience: New York, 1980; pp 223-227.

Table I. NMR Data^a for R₃P, R₃P, R₃PO, and R₃PAuCN

			R ₃ PA _u CN		$(R, P), Au^+$	R ₁ P	R_1PO
R	T.K	$\delta(P)$	$^{2}J_{\text{PC}}$, Hz	δ (CN)	$\delta(P)$	$\delta(P)$	$\delta(P)$
Ph	200	36.2	126.0	156.2	41.6	-7.8	30.4
Me	297	-3.3	129.4	158.3	- 5.1	-64.1	45.5
Et	297	35.1	122.2	160.4	43.2	-20.6	57.2
≀-Pr	297	65.0	116.4	160.9	74.0	18.1	62.2
Cv	297	53.5	116.4	160.9	62.4	8.2	53.5

^{*a*} In CH₃OD at 297 K (except for $R = Ph$); chemical shifts are in ppm from internal TMP or TMS; concentrations ranged from **0.05** to 0.10 M.

Integrated 31P spectra were acquired by using appropriate delay times $(\geq 4 \tau_1)$ and pulse angles $(\alpha = 45^{\circ})$.

Evaluation of K_{eq} **.** One of the primary goals of this study was to examine the effects of ionic strength, concentration, steric hindrance, and ligand basicity on the equilibrium constant for reaction **2.** A convenient

$$
2R_3PAuCN = (R_3P)_2Au^+ + Au(CN)_2
$$
 (2)

method for measuring K_{eq} is by quantitative integration of the ³¹P NMR spectra. In the ³¹P NMR spectra, only the R_3PAuCN and $(R_3P)_2Au^+$ are observed. Concentrations for R_3 PAuCN, (R_3P) , Au⁺, and Au(CN)₇ can be calculated from the relative intensities, I, of the phosphine resonances and the initial R,PAuCN concentration:

$$
[R_3PAuCN]_{eq} = \frac{(I(R_3PAuCN)_{eq})[R_3PAuCN]_0}{I(R_3PAuCN)_{eq} + \frac{1}{2}I((R_3P)_2Au^+)_{eq}} \tag{3}
$$

$$
[(R_3P)_2Au^+]_{eq} = \frac{(\frac{1}{2}I((R_3P)_2Au^+)_{eq})(R_3PAuCN)_0}{I(R_3PAuCN)_{eq} + \frac{1}{2}I((R_3P)_2Au^+)_{eq}} \tag{4}
$$

$$
[Au(CN)2]eq = [(R3P)2Au+]eq
$$
 (5)

Results

Synthesis of R,PAuCN. In order to verify that the ligandscrambling reaction previously reported² for Et_3PAuCN and Ph_3PAuCN also occurs for other R_3PAuCN complexes, two new complexes $(R = i-Pr, Cy)$ were prepared in addition to the known complexes $(R = Me, Et, Ph)$. The precursor complex for preparing the R_3 PAuCN complexes was AuCN; a new procedure for preparing this material from Me₂SAuCl was developed and used here: $[Au(CN)_2^-]_{eq} = [(R_3P)_2Au^+]_{eq}$
ts
thesis of R_3PAuCN . In order to verify that the lighting reaction previously reported² for Et₃PAuCN
AuCN also occurs for other R_3PAuCN complexes, twe
lexes $(R = i-Pr, Cy)$ were prepared in a

$$
Me2SAuCl \xrightarrow{excess KCN} \xrightarrow{H^*} AuCN + Me2S + KCl
$$
 (6)

Reaction of the solid AuCN with R_3P in appropriate solvents yielded R_3 PAuCN for $R = Ph$, Me, Et, *i*-Pr, and Cy:

$$
R_3P + AuCN(s) \rightarrow R_3PAuCN \tag{7}
$$

Several attempts to prepare $(C_6F_5)_3$ PAuCN were unsuccessful. Addition of $(C_6F_5)_3P$ to AuCN results in no reaction (eq 8).

$$
R_3P + AuCN(s) \rightarrow R_3PAuCN
$$
 (7)
Several attempts to prepare $(C_6F_5)_3PAuCN$ were unsuccessful.
Addition of $(C_6F_5)_3P$ to AuCN results in no reaction (eq 8).
 $(C_6F_5)_3PAuCl + CN^ \frac{-Cl^-}{}$
 ${}^*(C_6F_5)_3PAuCN$ $\overline{+K^+}$ AuCN + $(C_6F_5)_3P$ (8)

Conversely, reaction of KCN with $(C_6F_5)_3PAuCl$ (prepared by displacement of Me₂S from Me₂SAuCl by $(C_6F_5)_3P$) gives AuCN, $(C_6F_5)_3P$, and KCI instead of the expected $(C_6F_5)_3PAuCN$ (eq 8). These results indicate that the poor Lewis basicity of the $(C_6F_5)_3P$ renders the expected $(C_6F_5)_3P$ AuCN thermodynamically unstable with respect to AuCN under the conditions used here.

31P(iHJ NMR Spectra of R3P and R3P0. The free phosphines and their oxides were characterized by 31P NMR spectroscopy to ensure their possible identification in preparations of R_3PAuCN . Their chemical shifts, in the solvents used here, are given in Table I and are consistent with those found in the literature.16

³¹P{¹H} NMR Spectra of R₃PAuCN Complexes. The ³¹P NMR spectrum of Et_3PAuCN in CH_3OD was previously reported.² At 297 K, resonances occur at **43.2** and **35.1** ppm and were assigned

^{(10) (}a) Tolman, C. A. *Chem. Rev.* **1977, 77,** 313. (b) Strohmeier, W.; Muller, F. J. *Chem. Ber.* **1967,** *100,* 2812.

⁽¹⁶⁾ Crutchfield, M. M.; Dungan, C. H.; Letcher, J. H.; Mark, V.; Van Wazer, J. R. **In** *Topics in Phosphorus Chemistry;* Vol. *5,* Interscience: New York. 1967; Vol. *5.*

Figure 1. ¹³C^{{1}H} NMR spectrum of 0.05 M *i*-Pr₃PAu¹³CN (25% en-
riched) in CH₃OD at 297 K. Spectral assignments relative to internal **TMS** are as follows: i -Pr₃PAu¹³CN, δ (CH₃) = 20.7, δ (CH) = 24.7 (iJ_{PC}) $= 30.3$ Hz), δ (CN) = 160.9 ($^{2}J_{PC} = 116.4$ Hz); $[(i-P_{T3}P)_{2}Au^{+}]$, δ (CH₃) **152.1. 20.8,** δ (CH) **25.1** $(^1J_{PC} + \frac{3J_{PC}}{I_{PC}} = 14.3 \text{ Hz}$); $[A\mu$ (CN)₂⁻], δ (CN)

to $(Et_3P)_2Au^+$ and Et_3PAuCN , respectively. In the limit of slow ligand exchange, the ³¹P NMR spectra of R_3 PAuCN (R = Ph, Me, i -Pr, Cy) in CH₃OD (Table I) are similar to that of Et₃PAuCN. In no case were resonances observed for free R₃P or R_3PO . The resonances were assigned on the basis of the coupling constants, ²J_{PC}, observed for the ¹³CN⁻ enriched (25-30%) complexes; the R_3 PAu¹³CN resonance appears as a doublet that flanks the singlet resonance for the unenriched R₃PAuCN. For each phosphine, the resonance for (R_3P_2) Au⁺ appears downfield of the resonance for R_3 PAuCN. This is consistent with other studies in the literature.^{34,17} Thus, the two resonances demonstrate that these complexes undergo the same type of ligand scrambling in solution as Et_3PAuCN (eq 2).

The spectrum of Ph₃PAuCN is an exception to the pattern described. At 297 K, a single average resonance at 38.1 ppm without any ²J_{PC} is observed. When the temperature is lowered to 200 K, resonances are observed at 41.6 and 36.0 ppm corresponding to $(\text{Ph}_3\text{P})_2\text{Au}^+$ and Ph_3PAuCN , respectively. Carbonphosphorous coupling $(^2J_{PC} = 126 \text{ Hz})$ is also resolved at this lower temperature for the ¹³CN enriched complex.² The observation of an average resonance at room temperature is due to rapid ligand exchange between Ph_3PAuCN and $(Ph_3P)_2Au^+$. A lower limit for the phosphine exchange rate at 297 K estimated from chemical shift differences is $k > 3.6 \times 10^3$ s^{-1,18} An upper limit for the exchange at 200 K is $k < 1.8 \times 10^3$ s⁻¹.¹⁸

¹³C^{{1}H} NMR of R₃PAuCN. The ligand-scrambling reaction observed in the ³¹P NMR spectra of the complexes was further characterized by ¹³C NMR spectroscopy. The ¹³CN⁻ enriched complexes were used to obtain the spectra in order to shorten the time required to observe the metal-bound cyanide species.¹⁴ With the exception of the Ph_3PAuCN spectrum, which was not well resolved, the I3C NMR spectra obtained for these complexes in CH₃OD at 297 K paralleled that of $Et_3PAuCN²$. A typical spectrum for one of the complexes, i -Pr₃PAuCN, is shown in Figure **1.** The resonances were assigned in a manner similar to that of Et₃PAuCN² and are typical of aliphatic carbons.¹⁹ The ¹J_{PC} coupling constant is expressed as an absolute value and is comparable to those in other systems.20 Virtual coupling, which occurs when J_{PP} for $(R_3P)_2Au^+$ is large,²¹ was resolved for all of

Figure 2. K_{eq} vs $[NH_4NO_3]$ for Et₃PAuCN (0.05 M in CH₃OD) at 297 **K.** Concentrations of $NH₄NO₃$ were 0, 0.25, 0.51, 0.75, and 1.0 M, the average number of acquisitions was 60, the sweep width was 10000 Hz, the relaxation delay was $3-4$ times the $T₁$ value, and the pulse angle was **45O** or less.

Figure 3. K_{eq} vs [Et₃PAuCN]₀ in CH₃OD at 297 K. Concentrations of Et,PAuCN were **0.025,0.050,0.075,** and 0.10 M, the average number of acquisitions was **60** for each sample, the sweep width was loo00 **Hz,** the relaxation delay was $3-4$ times the T_1 value, and the pulse angle was **45O** or less.

the complexes except Ph,PAuCN. For all of the complexes, the cyanide resonance for R_3PAuCN (Table I) was downfield of the Au(CN)₂⁻ resonance, which occurs at 151.8 ± 0.4 ppm. The $^{2}J_{PC}$ values obtained are identical with those measured in the 31P NMR spectra. A summary of ¹³C NMR data for the complexes is available as supplementary material.

Dependence of K_{eq} **on Ionic Strength.** The first external influence examined was the ionic strength of the solution. Since ionic complexes are generated from the ligand-scrambling reaction, a change in the ionic strength of the solution should have an effect on K_{eq} . Because the T_1 values of Et_3PAuCN and $(Et_3P)_2Au^+$ were known,² Et₃PAuCN was used for experiments involving changes in ionic strength.

The requirements for the salt used to control the ionic strength of the solution were (1) component ions with low affinities for $gold(I)$, (2) sufficient solubility in methanol, and (3) availability in anhydrous form. $NH₄NO₃$ met all of the criteria. ³¹P NMR spectra were acquired for Et_3PAuCN (0.05 M) in CH_3OD with $NH₄NO₃$ at concentrations ranging from 0 to 1.0 M. The measured $K_{\rm eq}$ values are the averages of at least four determinations. A plot of K_{eq} versus the concentration of the salt (Figure 2) is linear and steadily increasing up to 0.75 M $NH₄NO₃$. This direct relationship between K_{∞} and $[NH_{4}NO_{3}]$ is consistent with the Debye-Huckel theory since ionic species are produced as a result of the ligand scrambling *(eq* 2). Increasing the ionic strength results in an increase of the activity coefficients for $(R_3P)_2Au^+$ and $Au(CN)_2$ ⁻ with a subsequent increase in K_{eq} . At 1.0 M $NH₄NO₃$, the K_{eq} decreases slightly, perhaps due to solvation

(21) Redfield, D. A,; Cary, L.; Nelson, J. H. *fnorg. Chem.* **1975.** *14,* **50.**

⁽¹⁷⁾ Colburn, **C.** B.; Hill, W. **E.;** McAuliffe, C. A.; Parish, R. **V.** *J. Chem. Soc., Chem. Commun.* **1979, 21 8.**

⁽¹⁸⁾ Drago, **R. S.** In *Physical Methods in Chemisiry,* W. **B.** Saunders:

Philadelphia, PA, 1977; p 255.
(19) Wehrli, F. W.; Wirthlin, T. In Interpretation of Carbon-13 NMR
Spectra, Heyden: New York, 1976; p 311.
(20) Wehrli, F. W.; Marchland, A. P.; Wehrli, S. In Interpretation of

Carbon-13 NMR Spectra, John Wiley and Sons: New York, **1983;** p **91.**

Table II. ³¹P(¹H) NMR Chemical Shifts and T_1 Values^a

		R_1 PAuCN		$(R_3P)_2Au^+$
R	$\delta(P)$	$T1$, s	$\delta(P)$	T_1 , s
Ph	36.4	7.4	42.1	7.4
Me	-3.0	7.9	6.5	8.5
Et	34.9	6.0	43.9	5.3
i - Pr	64.4	5.6	73.3	5.8
Cy	53.6	2.7	62.4	2.2

^a In CH₃OD at 240 K with 0.25 M NH₄NO₃; chemical shifts are in ppm relative to internal TMP.

effects or ion-pairing. Such a deviation is expected since a concentration of 1.0 M $NH₄NO₃$ is well beyond the limits of the Debye-Hiickel theory.

Dependence of K_{eq} **on** $[R_3PAuCN]_0$ **. The second external factor** that was examined was an apparent effect of $[R_3PAuCN]_0$ on K_{eq} . ³¹P NMR spectra were acquired in methanol at Et_3PAuCN concentrations ranging from 0.025 to 0.10 M. Each K_{eq} value obtained is an average of at least seven measurements. A plot of K_{eq} versus $[Et_3PAuCN]_0$ (Figure 3) is linear with the value of K_{eq} steadily increasing. This direct relationship between K_{eq} and $[Et₃PAuCN]_0$ is consistent with the effects of ionic strength on K_{eq} . An increase in $[R_3PAuCN]_0$ generates more $(R_3P)_2Au^+$ and $\text{Au}(\text{CN})_2$ ⁻ resulting in larger K_{eq} values.

K_{eq} for R₃PAuCN. In order to explore the effects of steric hindrance and phosphine basicity on the scrambling, K_{eq} for the series of complexes, R_3PAuCN , was measured under a standard set of conditions. First, a constant $[R_3PAuCN]_0$ was used because K_{eq} is dependent upon concentration. Second, K_{eq} was measured at 240 K. This was high enough to prevent crystallization of Me₃PAuCN, yet low enough to allow us to resolve the resonances for Ph_3PAuCN and $(Ph_3P)_2Au^+$, which are in rapid exchange at 297 K. Third, 0.25 **M** NH4N03 was added to each solution to maintain a constant ionic strength, so that the effects of different phosphines on $K_{\rm eq}$ could be directly studied without complications due to the ions generated by the ligand scrambling.

A series of 31P NMR measurements were made by using 0.02 M R₃PAuCN in CH₃OD and 0.25 M NH₄NO₃ at 240 K. The concentration for the Ph_3PAuCN was 0.01 M because its solubility in CH₃OD at 240 K was limited. This slight decrease in concentration should not affect K_{eq} since the added NH_4NO_3 determines the ionic strength. Concentrations of the other complexes were not decreased to 0.01 M because this would have increased the acquisition time. T_1 values were evaluated by the inversion-recovery method so that the spectra could be quantitatively integrated; they appear in Table **11** along with the chemical shifts for \overline{R}_3 PAuCN and $(R_3P)_2$ Au⁺. The K_{eq} values, which are averages of at least 12 determinations, are listed in Table **111** along with the cone angles, θ ,¹⁰ electronic parameters, ν_{CO} ,¹⁰ and μ_{Sep}^2 values of the phosphines. Clearly the nature of the R_3P affects the K_{eq} value; the relationships between K_{eq} , v_{CO} , J_{Sep} , and θ will be discussed more fully below.

Slow Equilibration of Cy3PAuCN. Initial attempts to measure $K_{\rm so}$, as described above, for the tricyclohexylphosphine complex produced disparate values. These values, more properly designated as **Q,** measured the ratio [products]/[reactants] before the system was at equilibrium. We tentatively attributed this anomalous behavior to slow equilibration due to the bulkiness of the $Cy₃P$ groups. When several weeks was allowed for equilibration with the sample at -15 °C a value of 0.49 \pm 0.02 was obtained.

Two experiments were designed to examine this hypothesis and to ensure that the K_{eq} value of 0.49 \pm 0.02 is, indeed, the equilibrium constant. In the first experiment, equimolar amounts of $[(Cy_3P)_2Au^+][ClO_4^-]$ and $KAu(CN)_2$ were added to a sample of Cy_3PAuCN with $Q = 0.0046 \pm 0.001$. If the ligand scrambling was rapid, the Q obtained after the addition of the $(Cy_3P)_2Au^+$

Table III. Comparison of K_{eq}^{α} with Phosphine Steric^b and Electronic Parameters^t

R ₂ PA _u CN	K_{∞} (esd)	θ , deg	$\nu_{\rm CO}$, cm ⁻¹	J_{Sep} , Hz ^c	ref
Ph ₂ PAuCN	0.112(5)	145	2069	734	22a
Me ₂ PAuCN	0.37(5)	118	2064	684	22b
Et ₁ PAuCN	0.24(2)	137 ^d	2062	691	22a
i-Pr ₃ PAuCN	0.29(3)	160	2059	713	22c
Cv ₁ PAuCN	0.49(2)	170	2056	683	22c

^{*a*} In CH₃OD with 0.25 M NH_4NO_3 at 240 K. ^{*b*} See ref 10a. ^{*c*} ¹J_{SeP} values that are reported for the R_3 PSe derivatives are known to be negative but are used as absolute values in this paper. ^dSee ref 26.

and $Au(CN)_2$ ⁻ should remain as 0.0046 \pm 0.001. Integration of the 31P NMR spectrum, obtained immediately after the addition, yielded a Q value of 0.192 ± 0.006 . This larger value demonstrates that the $Cy₃PAuCN$ system requires a longer time to reach equilibrium than the other R3PAuCN complexes. **In** a second experiment, equimolar quantities of $(Cy_3P)_2Au^+$ and $Au(CN)_2^$ were dissolved in CH₃OD. Initially, Q was 0.58 ± 0.05 but a second measurement several weeks later yielded $Q = 0.528 \pm$ 0.005. This value is close to the K_{eq} value of 0.49 \pm 0.02 obtained when the equilibrium is approached from the opposite direction.

The above experiments confirmed that the initial disparate values of Q are due to slow ligand scrambling. This is unusual since many gold(1) complexes are labile and their ligand-scrambling reactions occur rapidly (usually complete within minutes or less).^{3a,6,23} Indeed, for all of the other R_3PAuCN complexes, K_{eq} remained constant over time with the possible exception of i -Pr₃PAuCN, which may have shown a slight increase. The unusual behavior of the Cy_3PAuCN can be attributed to its extremely large steric bulk ($\theta = 170^{\circ}$). It is likely that the ligand scrambling occurs by an associative mechanism with a three-coordinate transition state or intermediate.^{3a,6,23} Such a mechanism would be inhibited by the large steric bulk of the $Cy₃P$. Further evidence of the large steric bulk of the Cy_3P is the failure of $[(Cy_3P)_3Au^+]$ to form in solution when excess Cy_3P is added to [(Cy3P)2Au+].'7 Similar species have **been** observed by 3rP NMR for phosphines with smaller cone angles, e.g., $Me₃P^{3c}Et₃P₃$ and Ph3P.24

Discussion

bling reaction of the R_3PAuCN complex is given by **Driving Forces for the Ligand Scrambling.** The ligand-scram-

$$
2R_3\text{PAuCN} \rightleftharpoons (R_3P)_2\text{Au}^+ + \text{Au(CN)}_2\text{}
$$
 (2)

If the reaction were driven solely by randomization due to entropy, $[R_3PAuCN]$ would be twice $[(R_3P)_2Au^+]$ and $[Au(CN)_2^-]$, yielding a K_{eq} of 0.25. Similar ligand scrambling reactions have been observed for anionic complexes of the type $Au(X)I$, where $X = SCN^{-5a}$ and CN^{-5b} and the neutral complex $(NH_2)_2CSAuI$. When their equilibrium constants (K_{rd}) are recalculated according to eq 7, the values are **0.50,0.50,** and 0.63, respectively. These values indicate that the reaction is not driven solely by randomization. In this study, the K_{eq} values obtained (Table III) are both greater than and less than 0.25, suggesting that additional factors influence the extent of ligand scrambling. These factors can be divided into extrinsic and intrinsic influences whose magnitude **of** effect on *Kq* are **similar.**

The extrinsic influences include (1) the ionic strength of the solution and (2) the initial concentration of the $R_3PAuCN.$ A third external influence that was examined in an earlier study is solvent **polarity/polarizability.2** That study demonstrated that K_{eq} increases as the polarity/polarizability of the solvent increases.²⁵ Our present data demonstrate that increasing either the ionic strength or the $[R_3PAuCN]_0$ also increases the extent of ligand scrambling. In both studies, the increase in K_{eq} can be

⁽²²⁾ In order to obtain a set of reasonably consistent $^1J_{S_{\epsilon-}P}$ values we used those that were obtained in chloroform and/or methylene chloride. (a) Kuhn, N.; Schumann, H. J. *Organomet. Chem.* 1986, 304, 181. (b)
McFarlane, W.; Rycroft, D. S. J. *Chem. Soc., Dalton Trans.* 1973,
2161. (c) Dean, P. A. W. *Can. J. Chem.* 1979, 57, 754.

⁽²³⁾ Isab, A. A.; Hormann, A. L.; Coffer, M. T.; Shaw, C. F., **111.** J. *Am. Chem.* **SOC. 1988,** *110,* 3278.

⁽²⁴⁾ Muetterties, E. L.; Alegranti, C. W. J. Am. Chem. Soc. 1972, 94, 6386.
(25) The previously published² K_{eq} values for Et₃PAuCN were miscalculated.
Corrected values are 0.018 (4) in CDCl₃, 0.034 (8) in C₆D₆ in CH₃OD, and 0.092 (4) in (CD₃)₂SO.

Figure 4. (a) K_{eq} vs electronic parameter ν_{CO} of the phosphines. (b) K_{eq} vs $=$ **240 K;** $[R_3P\text{AuCN}]_0 = 0.02$ **M except for** $[Ph_3P\text{AuCN}] = 0.01$ **M. N delay was 3-4 times the** *T₁* **value, and the pulse angle was 45° or less.** of the phosphines. (c) K_{eq} vs cone angle, θ , of the phosphines. *T* 0.01 M. Number of acquisitions was 120, the sweep width was 10000 Hz, the relaxation

attributed to an increase in the activity coefficients for the ionic components of the equilibrium.

Intrinsic factors include bond energies and the electronic and steric effects of the phosphine ligands. In R3PAuCN, the phosphorus is trans to a carbon (P-Au-C), whereas in $(R_3P)_2Au^+$ it is trans to a phosphorous $(P-Au-P)$. Likewise, the cyanide is trans to phosphorus in R_3 PAuCN and trans to another cyanide in Au(CN)₂⁻. Unfortunately, neither experimental nor calculated bond energies are available for such complexes. There are, however, a number of empirical correlations that allow us to examine the effect of phosphine basicity and steric bulk **on** the magnitude of K_{eq} .

Two correlations that are frequently used to determine relative basicities of phosphines are the electronic parameter, *uco* for R₃PNi(CO)₃ (values tabulated by Tolman^{10a}) and ¹J_{SeP} values¹¹ obtained from the 3'P or 77Se NMR spectra of the selenium derivatives, $R_3PSe.$ A decrease in the ν_{CO} or the $^1J_{Sep}$ value indicates a net increase in the electron-donating ability of a phosphine. For both the v_{CO}^{10a} and the $^{1}J_{\text{Sep}}^{22}$ parameters, generally linear correlations are obtained (parts a and b of Figure 4, respectively) when they are plotted against K_{∞} . This suggests that the electron-donating ability of the phosphine is a major influence on the magnitude of K_{eq} , with K_{eq} increasing as the Lewis basicity of the phosphine increases. The most significant deviation from the least-squares fit in Figure 4a is the K_{eq} for Me₃PAuCN. The anomalously large value of 0.37 ± 0.05 is most likely due to increased solvation of the $(Me_3P)_2Au^+$ because of its smaller bulk.

The final intrinsic factor that we examined was the steric bulk. The various methods that have been used to quantify the steric bulk of a ligand have recently been summarized in a review.²⁶ With the exception of Et_3P , we have chosen to use the cone angles reported by Tolman^{10a} (Table III) because they were available for all of the phosphines in this study. For Et_3P , we used the slightly larger value of 137°,²⁷ which was reported for the same configuration of the ligand found in $Et_3PAuCN²$. A plot of K_{∞} versus θ (Figure 4c) is nonlinear, indicating that there is no direct correlation between the steric bulk of the phosphine and the magnitude of K_{∞} . This is expected since all of the species observed by NMR are two-coordinate. If steric bulk was a major influence on the magnitude of K_{eq} , the Cy₃PAuCN would have an anomalously small K_{eq} ; instead, it has the largest, which is consistent with the dependence of K_{eq} on the electron-donating ability of the phosphine.

Finally, some discussion should be devoted to the affinity of the phosphine ligands employed in this study for gold(1). R₃PAuCN was successfully and easily prepared from AuCN and R_3P when $R = Ph$, Me, Et, *i*-Pr, and Cy. However, attempts to prepare (C_6F_5) , PAuCN were unsuccessful. An examination of the electronic parameters of the phosphine offers a possible explanation. v_{CO} for (C_6F_5) ₃P is 2091 cm⁻¹; this value is greater than $\nu_{\rm CO}$ for Ph₃P (2069 cm⁻¹),^{10a} which is the poorest Lewis base among the phosphines successfully employed. Thus the inability to prepare (C_6F_5) ₃PAuCN is most likely due to the poor electron-donating ability of the phosphine. Interestingly, the (tris- (cyanoethyl)phosphine)gold(I) cyanide complex, (CNCH₂C-H2),PAuCN, has **been** prepared from the corresponding chloride complex.²⁸ ν_{CO} for the phosphine, $\text{(CNCH}_2\text{CH}_2)$ ₂P, is 2078 cm^{-1} ,^{10a} making it a poorer Lewis base than Ph₃P but greater than (C_6F_5) , P. The increased electron-donating ability of the (CNC- H_2CH_2)₃P increases its affinity for the gold(I), leading to formation of $(CNCH₂CH₂)₃PAuCN$. Hence, one may use the ν_{CO} values tabulated by Tolman^{10a} to predict the ability of a phosphine to react with AuCN to form R_3PAuCN . For ν_{CO} < 2078 cm⁻¹, the reaction is favorable; for ν_{CO} > 2091 cm⁻¹, it is not. Between these values the formation of the complex R_3PAuCN is not yet predictable.

In summary, we have found that the ligand-scrambling reaction for R3PAuCN is dependent upon such extrinsic factors as the initial concentration of the R_3PAuCN , solvent polarity/polarizability,² and the ionic strength of the solution. Any increase in the ionic strength of the solution causes a subsequent increase in the extent of ligand scrambling. We have also demonstrated that *K,* is dependent **upon** the Lewis basicity of the phosphine ligand. Although the correlations with ν_{CO} and $\text{^{1}}J_{\text{SeP}}$ are not completely linear, K_{eq} generally increases with increasing basicity of the phosphine.

Acknowledgment. A.L.H-A. thanks the UWM Graduate School for graduate and dissertator fellowships. We thank **Su**zanne Wehrli for assistance with the NMR spectroscopy. This research was supported by the NIH (AR 39902) and has benefitted from NMR instrumentation supported by the Division of Research Resources of the NIH (Grant RR 04095) and the Biological and Chemical Instrumentation Programs of the NSF (Grant DIR-87 19808).

Supplementary Material Available: Tables of analytical data for R_3 PAuCN (R = Ph, Me, Et, *i*-Pr, Cy) complexes and ¹³C{¹H} NMR chemical shifts for 25-30% enriched R₃PAu¹³CN complexes in CH₃OD **(2** pages). Ordering information is given on any current masthead page.

⁽²⁶⁾ McAuliffe. **C.** A. **In** *ComDrehemiue Coordination Chemisfrv:* Wilkin- **.I** son, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: New York. **1987: Vol. 2,** pp **1012-1029.**

⁽²⁷⁾ Stahl. **L.;** Ernst, R. D. *J. Am. Chem. Soc.* **1987,** *109,* **5673.**

⁽²⁸⁾ Starich, Mary. Personal communication, University of Wisconsin-Milwaukee.